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Mathematical 3-D Model for
Whiplash Simulation

by Donn N. Peterson, P.E. (NAFE 239F)

Introduction

Several years ago, the author developed a mathematical 2-D model to quan-
titatively describe the forces, moments, and motions of vehicles and dummy
occupants during collisions. The equations of motion and applicable logic state-
ments were programmed in Basic to use on PC’s (IBM compatible personal
computers). Simulations of many crashes have been successfully run on PC’s
using the 2-D model. Clients are usually interested in the responses of the
dummy head and torso and the calculated magnitudes of forces and moments in
the neck joint. These data are particularly useful in litigation cases where med-
ical findings are subjective (e.g. soft tissue injuries) and opinions of the treating
and adverse health care professionals differ significantly.

When additional relevant information has been received, the model has
been refined. The model has been modified to accommodate crashes in which
the target and bullet vehicles are off-center and reasonably close in axial align-
ment. A description of the 2-D model was presented at the 1993 Annual
Meeting of the American Academy of Forensic Sciences at San Antonio, Texas.

In a particular recent case, the nature of the collision and the posture of the
occupant driver are not within the inherent constraints of the 2-D model. In
order to adequately study this case, a mathematical 3-D model would be
needed.

The adage that “necessity is the mother of invention” applies to an
unfunded project conducted by the author. This paper describes a mathematical
3-D model developed by the author for simulating vehicle and occupant
responses during collisions.

Methodologies

State-Space Formulation

In this formulation, the time derivatives of all system variables are
described as a function of the current values of those variables and as a function
of external input(s) to the system. The general vector-matrix form is
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IX| = f1]X]| + f2|U|

where |X] =1Xsl, U] = U,

.1 I.
.1 I .
[ Xl (Ul

fi, f2 are known mathematical functions

Second order derivatives (e.g. accelerations) are treated by defining a
velocity vector and noting that velocity is the time derivative of displacement
and that acceleration is the time derivative of velocity;

IVl = IX], and [A] = |V]

Lumped Parameters

A distributive object is represented as a series of rigid masses intercon-
nected by springs and dampers. The motion of each lump of mass is defined by
a linear translation of its center of mass in 3-D space and by rotation about its
center of mass. In this manner, complex objects are approximated by more
familiar vibration systems.

Linear translation spring forces between adjacent lumps of mass are
defined by the stretch of the spring in each of the three directional coordinates,
X, y,and z

Fsxiz = -Kx(X1-X2), Fsyr2 = -Ky(Y1-Y2), Faut2 = -Ku(Z1-Z2)

where Fs = spring restoring force - 1br
K = spring constant - Ibr/in
X, Y, Z are directional coordinates - inches

Linear translation damper forces between adjacent lumps of mass are
defined by the velocity differential across the damper

Faxiz = -Cx(X1-X2), Fayi2 = -Cy(Y1-Y2), Faurx = -C2(Z1-Z>)

where Fa = damper resistance force - 1bs
C = damper constant - Ibr/in/sec

X, Y, Z are derivatives of coordinates - in/sec
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v

Linear torsional spring and damper torques between adjacent lumps of
mass are represented by equations similar to the preceding two equations.

Tsﬂz = -K:m(@u-ﬂzz), Tsﬂx = 'Ktﬂx(ﬂxl-gxz), Ts(')y = -Kl(‘)y(ﬂyl-gyz)

where T = torsional spring restoring torque - in lbr
K. = torsional spring constant - in lbr/rad
D, D, @ are rotational coordinates - radians
and

Tao: = -sz(én-.ﬂzz), Taox = -Cl()x(éxl-bxz), Taoy = 'Cl()y(.g,\l'.gyZ)

where Ta = torsional damper resistance torque - in Ib¢
C: = torsional damper constant - in Ibr/rad/sec

D, O, @, are derivatives of coordinates - rad/sec
When the spring and damping constants are not known, experience and
intuition will usually provide at least approximate values for natural frequencies
and damping ratios. It can be shown that the spring constant is related to the
natural frequency and mass by

K:ﬂ(ZTCFn)'2
g

where W= weight of the mass - 1b

g = 386.088 in/sec/sec at 45 deg lat and sea level
F. = natural frequency - hertz
T = 3.141593 to 7 significant figures

and that the damping constant is related to the natural frequency, the damping
ratio, and the mass by

K= w 2r Fn) D.
g
where  Dr = damping ratio - decimal fraction of critical

The torsional spring constant is related to the natural frequency and
moment of inertia by

K =W R (2 7t Fu)
g

where K. = torsional spring constant - in Ibf/rad



Copyright © National Academy of Forensic Engineers (NAFE) http://www.nafe.org. Redistribution or resale is illegal.
Originally published in the Journal of the NAFE volume indicated on the cover page. ISSN: 2379-3252

PAGE 42 DECEMBER 1996 NAFE 239F

R = radius of gyration - in
Fu = torsional natural frequency - hertz

and the rotational damping constant is related to the natural frequency, the
damping ratio, and the moment of inertia by

2
Ci=2WR 2 7nFx) D
g

where C: = torsional damping constant - in Ibr/rad/sec
D~ = torsional damping ratio - fraction of crit.

Programmable on a PC

Over the past years, PC’s (IBM compatible personal computers) have
become more affordable, more readily available, and have had great improve-
ments in their computing capabilities. Besides that, the author has several avail-
able for usage. Therefore, the new mathematical 3-D models are programmed
for PC’s on which the simulations are run.

Numerical Integration

Since the simulations are performed with digital computers, integrations
must be performed using numerical methods. The Euler method is perhaps the
simplest to use (and subject to the greatest inaccuracies). In this method the
value of a variable at the next time step is related to its current value and the
current value of its derivative by

Xi(t + At) = Xu(t) + )'(s(t) At

where Xi = variable
Xi = time derivative of the variable
t = current time - sec
At = time step - sec

The improved Euler method, also called the Heun method, uses an average
value for the derivative as

Xi(t + At) = Xi(t) + X i(t) + X i(t + At) At
2

Other methods are available which use weighted averages or higher orders
of derivatives. The Runge-Kutta method is one such example.Current versions
of the 3-D mathematical model use the Euler or Heun methods with small time
steps to minimize possible inaccuracies. (e.g. At = 0.001 sec.)
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Newton’s Laws of Motion

The equations of motion are taken to be translation of the center mass for
each lump of mass in inertial space (earth coordinates) and rotations about its
center of mass (body coordinates). The function fi in the state-space formulation
involves calculations of all external forces and torques acting on each lump of
mass within the system.

When the forces are expressed in earth coordinates, the equations have the
familiar forms

ZF“:EVu,Zch:wae,and Zer=ﬂv“
g g g

where  Fie, Fye, Fze are forces in earth axes - lbr
Vie = Xe 3 Vie=Y. ’ and Ve = Z. - in/sec

When the torques are expressed in body coordinates, the equations have
cross-coupling terms and are written as

> Taw=1In \./mb + (I - Ixn) byb éfxb ,
Y Txo= I ‘.lﬂxb + (I - Iyp) bzb byb ,
and Y Tyo= I ‘.Itlp'b + (Ixo - Ian) .@xb ézb
where T, Tx, Ty are torques about body axes - in lbr
I, Ixv, Iy are moments of inertia about body axes
Vo = ézh, Vo = éxb , and Voyw = é)‘b - rad/sec

Coordinate Transformation Equations

It is usually easier to express some of the forces and most of the torques in
terms of body coordinates rather than in terms of earth coordinates. In the pre-
vious section of this paper the force equations are in earth coordinates and the
torque equations are in body coordinates. Solutions to these equations are facil-
itated by the development of additional equations which can be used to trans-
form variables from one coordinate system to the other.

The author derived transformation equations for the following order of
rotation: 1. about body z-axis (yaw), 2. about body x-axis (roll), and 3. about
body y-axis (pitch).
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Earth to Body

X jain aiz an| | Xe - Xeg
|Ys] = a2 az azl [Ye - Y
IZbl |aJl as:2 assl 'Ze - ch|

where  Xu, Yn, Zv = position vector in body coordinates
Xe, Ye, Z. = position vector in earth coordinates
Xegy Yepy Zeg = center of mass in earth coordinates

from matrix arithmetic

Xb = an (Xe - Xcg) + an2 (Ye - ch) + an (Ze - ch),
Yo = an (Xe - Xcg) + an (Ye - ch) + az (Ze - Ztg),
and Zv = an (Xe - Xcg) + as2 (Ye - ch) + a3 (Ze - ch)

Body to Earth

1 Xe| [ann az asn | [ X [ X sl
1Yel] = [anz a2 axn| [Yo] + |Yegf
|Z| [ais a2 ass | | Zy| {Z e

from matrix arithmetic

Xe=an Xo + az1 Yo + an Zv + Xep,
Ye = a2 Xo + a22 Yo + @32 Zv + Yo,
and Ze¢ = a3 Xo + a2 Yo + ass Zo + Zeg

The matrix elements in the preceding vector-matrix transformation equa-
tions are

an = cos @y cos Q. - sin @, sin Q. sin O:
a2 = cos @y sin @: + sin By sin Ox cos O-
ai: = - sin @y cos O,

an = - cos O« sin 9.

az: = cos @« cos O:

a: = sin O«

asn = sin @, cos @: + cos @, sin O« sin O:
a» = sin @, sin @. - cos @, sin O« cos B-
as = cos Dy cos O«

Caution: Since matrix multiplications are not associative or commutative, the
resulting equations will be different for a different order of rotation. Therefore,
it is important to maintain the proper order of rotation within the algorithm.
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Selection of Coordinate Systems

The equations derived to this point assume orthogonal axes which are
mutually perpendicular and satisfy the “right hand rule”. The author chooses
earth coordinates such that the x-axis is horizontal and parallel to the length of
the roadway with the origin at a convenient reference point and x being positive
progressing in the direction of travel of the selected driving lane. The y-axis is
horizontal and perpendicular to the length of the roadway with the origin on the
right fogline of the selected driving lane and y being positive progressing from
the fogline toward the centerline. The z-axis is vertical with the origin on the
road surface and z being positive progressing vertically upward from the road
surface.

The SAE (Society of Automotive Engineers) coordinate convention has the
origin on the centerline with y positive toward the right fogline and z positive
downward. During most of the author’s inspections of accident scenes, traffic
conditions have forced most measurements to be made from the road shoulder
rather from the centerline. Therefore, field notes usually have y measurements
recorded from the fogline. For this reason and for a personal preference for z
being positive upward as in the Autocad software, the author chooses to not use
the SAE coordinate convention.

With the author’s selection of coordinate convention, @: (yaw) is positive
ccw as viewed from above, @« (roll) is positive rotating upward from the
selected driving lane surface, and @y (pitch) is positive when the leading end
rotates downward. The body coordinates for each lump of mass are chosen to
have the same sense as the earth coordinates when the vehicle is following the
roadway with its occupant(s) seated and facing straight ahead in the direction of
travel.

Mathematical Model Schematics

In any lumped parameter representation of objects, there are necessarily
only a finite number of degrees of freedom for any simulation. This number can
be increased by increasing the number of lumps of mass. Since increasing the
number of lumps of mass adds to the model complexity and increases the com-
puter requirements, compromises must be made. Current versions of the mathe-
matical model are defined schematically in this section.

Vehicles

Each vehicle is represented as two lumps of mass and a massless bumper.
The bumper is connected to the first mass (approximately 25% of the vehicle
sprung mass) by springs and dampers. The first mass is connected to the second
mass (approximately 75% of the sprung mass) by additional springs and
dampers. The seat bottom, seat back, and seat belts are represented as
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deformable but anchored to the second mass. Each mass translates and rotates
in 3-D constrained by interactions with the road surface and with the other
lumped masses.

Vehicle Schematic #1, #2, and #3 are top, right side, and front end views
respectively demonstrating the lumped parameter representation for each vehicle.

Occupants

Occupant dummies in each vehicle are represented as 3, 4, or 5 lumps of
mass. All representations have separate masses representing the head, torso, and
abdomen. The head (approximately 7% of the dummy body mass) is connected
to the torso by springs and dampers. The torso (approximately 43% of the
dummy body mass) is also connected to the abdomen by springs and dampers
and it is acted upon by the seat back and shoulder belt. The abdomen is acted
upon by the seat bottom, seat back, and lap belt. In the 4 and 5 lump models,
additional lumps of mass represent the legs (combined in the 4 lump model or
individually in the 5 lump model) connected to the abdomen by springs and
dampers and acted upon by the seat bottom.

Occupant and Seat Schematic #1, #2, and #3 are top, right side, and front
views respectively demonstrating the lumped parameter representation for an
occupant dummy. These drawings represent a 4 lump model.

Conclusions

A mathematical 3-D model has been developed which is the basis for com-
puter simulations of “whiplash” during vehicle collisions. The basic equations
used in the formulations are presented. Simulation and case study results are the
subject for another paper.
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Nomenclature

|V] = Acceleration Vector (velocity derivative)
nth element of acceleration vector

Ax, Ay, A: - inches/second/second

oz, Ox, Oy - radians/second/second

A
An

aija=1,23j=12» = Transformation matrix elements
v = Subscript for body coordinates
C = Damper constant

linear elements - pound*second/inch

rotational elements - inch*pound*second/radian
D, = Damping ratio - decimal fraction of critical value
a = Subscript for damper forces and torques
« = Subscript for earth coordinates
F, = Natural frequency - hertz (cycles per second)
Fxb, Fyo, F = Force components in body axes - pounds
Fse, Fye, Fze = Force components in earth axes - pounds

fi, f2 = Expressible mathematical functions

g = Gravity constant = 386.088 inches/second/second at
45 degrees latitude and sea level

I, Iw, Is = Moments of inertia about body axes
- pound*inch*second*second

K = Spring Constant
linear elements - pound/inch

rotational elements = inch*pound/radian

Ibr = Pounds force

R = Radius of gyration - inches
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s = Subscript for spring forces and torques

T, Tw, Tys = Torques about body axes - inch*pound

t = Time - seconds
At = Time step for numerical integration - second
|[Ul = Control (external input) vector

Um = mth element of control vector

V]| IX| = Velocity vector (position derivative)
Vn = nth element of velocity vector

Vs, Vy, V.- inches/second

., Ox, O, - radians/second

|X|] = State (position) vector
Xn = nth element of state vector
X, Y, Z - inches from origin
D:, O, B, - radians from straight ahead level
e.g. Xn = x, y, z, @z, Ox, By, Vx, Vy, Vz, Wz, Wx, Wy
for each lump of mass

oz (yaw) , ox (roll), oy (pitch) = Angular accelerations
- radians/second/second

ox (yaw) , @ (roll), oy (pitch) = Angular velocities - radians/second
0. (yaw) , @« (roll), @, (pitch) = Angular rotations - radians

7 = 3.141593 to seven significant figures
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